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Abstract—To get a robot to perform tasks autonomously, Although robotic navigation is one application where a
the robot has to plan its behavior and make decisions based POMDP needs to be solved, the method is widely applicable
on the input it receives. Unfortunately, contemporary robot to other problems. Givon and Grosfeld-Nir [5] used the

sensors and actuators are subject to noise, rendering optimal . . . )
decision making a stochastic process. To model this process, POMDP model for computing optimal termination times of

partially observable Markov decision processes (POMDPs) can TV shows. An application in another field is provided by

be applied. In this paper we introduce the RENQ algorithm, Hoey et at. [6], who use a POMDP model to handle the
a new POMDP algorithm that combines neural networks for  uncertainty in observations from a monitor, assisting peop

estimating Q-values with the construction of a spatial pyramid with dementia washing their hands.

over the state space. RENQ essentially uses region-based belief In thi i t REN | h
vectors together with state-based belief vectors, and these ear n '? paper we will presen Q, a novel approac
used as inputs to the neural network trained with Q-learning.  for solving model-based POMDPs. RENQ uses a neural
We compare RENQ to Qmdp and Perseus, two state-of-the-art network in combination with Q-learning [24], [25], whereeth
algorithms for approximately solving model-based POMDPs. pelief-state is given as input to the neural network. RENQ
The results on three different maze navigation tasks indicate enhances the state-based belief vector input of the network
that REN tperfi P I bl d dp if - . .
thg probSﬁg&%ﬁégsarge;eus on all problems and Qmdp | by construcfung a spatial py_raml(_i over the state space [9], a
method derived from machine vision. At every level of the
|. INTRODUCTION pyramid, the average belief of a subset of the state space
) ) ) ) is computed and the enhanced belief state is presented to
In robotics, a major goal is getting a robot to leamn e neyral network. We compare the RENQ algorithm to
perform a task autonomously. Thl_s_ task can mvolve gettm@mdp [11], a method known to be fast in handling large state
a robot from a start to a goal position. A possible approacth,ces and Perseus [21], an efficient state-of-the-art-poin
to this problem is to useeinforcement leamindRL) [23].  pased value iteration algorithm. We test the algorithms on

Reinforcement learning originated from early work in Cy+hree different maze navigation tasks and show how RENQ
bernetics, statistics, psychology and neuroscience,abeityl outperforms the other two methods.

has received a lot of attention from the Artificial Intelligze Outline. This paper is divided into 6 sections. In section I,

(Al) and machine learning disciplines [7]. It can be seen age \j|| discuss the basic framework of Markov decision pro-
a form of machine learning, but is different from supervisedggses; followed by a brief description of value iteratiad a
learning methods in the sense that the agent does not le@l|earing, two techniques for solving MDPs and reinforce-
from correct input-output examples, provided by an extemanent jearing problems. In section Il the POMDP model
supervisor, but has to learn from feedback given by thi pe presented along with two algorithms for handling
environment. The feedback the agent receives is typicalyoppps. Next we discuss RENQ, the new method based
represented as a numerical value, where a positive rewggfl ;5. jearning and neural networks, combined with a spatial
is given for the display of a desired behavior and a negativg s mig approach. Section V will cover the experimental
reward for an undesired action. The robot's task is t0 d@/elqsaq,, and results acquired with the three POMDP algorithms.

a model of what action to take in a given state, thereby cqnciusion and discussion will be presented in section V.
maximizing its long term reward.

Unfortunately the robot's actuators do not always act Il. MARKOV DECISION PROCESS
according to the instructions they have been given. When it | this section, we will start by giving a formal definition

has to move right it sometimes moves left or bumps intgf the MDP model, followed by a description of value

a wall and stays in the same place. This uncertainty iferation. Then, we describe the Q-learning algorithm wwhic
transitions can be modeled usindvearkov decision process s part of the RENQ algorithm.

(MDP). On top of the uncertainty in the robot’s actuators,
there is noise in its sensor readings as well. This parti&- Formal Description
observability of the world can be captured in a generalirati  An MDP is characterized by:
of an MDP, called goartially observable Markov decision
process(POMDP).

« a finite set of states € S
« a finite set of actions € A

- ) _ _ « a transition function?'(s, a, s"), specifying the proba-
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« a reward functionR(s,a), providing the scalar reward This formula is a form of the Bellman equation named
the agent will receive for executing actianin states  after Richard Bellman, who introduced it in 1957 [3]. With
The MDP framework assumes a full map of the environmenrhis function, we can iteratively update the value of all
is known to the agent and treats time and s8tand .4 states, until it reaches a convergence criterion, regultin
as discrete. For reinforcement learning algorithms, thePMDIin an optimal state-value functio(s), from which we
does not have to be known, but we assume a model of than derive an optimal state action-value functiQh(s, a).
POMDP is given in our experiments. Otherwise, the problef§nowing the value of all states, the agent can select the
would become even harder. action with the highest utility in every state, which willae
The Markov property entails the fact that the state of théd an optimal policy. Value iteration is an algorithm thaesis
environment and the reward the agent receives at tima&  this concept.
is stochastically determined by the state of the agent a tin& value lteration
t and the action the agent takes. This is called a first order

Markov process [19]: Value iteration is a (truncated) dynamic programming al-
gorithm for computing optimal value functions and provides
P(s,rels0, a0, .., se-1,a1-1) = Pls,melse—1,a-1) (1) an exact solution for solving MDPs. The main idea behind

The agent’s task is to maximize its long term reward. Du#is method is to compute the value of alE S iteratively,

to the stochasticity of the problem, a mapping is needeand to truncate the algorithm as soon as the difference in
from states to actions. We call such a mappingoticy and  value of a state between two iteratiods:= max,es |V;(s)—
denote it asr(s). An optimal policy7* maximizes the long Vi-1(s)| drops below a threshold, whera is typically
term reward intake. In order to compute the optimal policyeferred to as the Bellman residual. To approximate theevalu
the agent will assign a certain value for being in a state & a state, value iteration uses the Bellman equation in Eq.
performing some action in a state. (5) as an update rule, see Algorithm 1.

B. Value Functions Algorithm 1 Value iteration
The returnR; of a state is defined as the cumulative reward Initialize V(s) and Q(s, a) arbitrarily

the agent can expect to receive after reaching the givea stat repeat

at time stept. Mathematically,R; is written as the sum over A 0
all rewards the agent receives at each time step, weighted by {5, 411 s ¢ S do
a discount factory, where0 <~ < 1: v V(s)
) . for all a € A do
Ry =reen +97002 9770+ = Y e () Q(s,a) — X, T(s,a,5)[R(s,a,s') + 7V (s)
k=0 end for
Introducing a discount factor has two purposes: (1) it medel V(s) « maxge4 Q(s,a)

the preference of the agent to immediate rewards as opposed A — max(A,v — V(S5))
to those received in the future, and (2) ensures the infinite end for

sum is finite as long as < 1 and the rewards are bounded. yntil A < 6

When the discount factor is set closeltahe agent will value
future rewards greatly, whereas one clos® twill make the

agent focus on immediate rewards and value the future IeSS_FormaIIy, the algorithm would need an infinite number 9f
The value of states under policy = is defined as the sweeps through the state space to converge to an optimal

expected discounted cumulative reward and is given by: value fu_nct|on, but the OP“"?a' vaI_ug can be approxw_nated
by aborting the algorithm ifA is sufficiently small. A major

x - drawback is that each iteration requires updating the value
V7(s) = B2 resrls = o @) o every s € S, resulting in a co?nputatiorr:al C(?mplexity
f O(|A||S|?) per iteration. This is time consuming for
roblems with a large state space.

Once the algorithm is finished, the agent can use the values
of state-action pairs to select the action with the best eeoe
outcome:

Q" (s,a) = E[Z ’ykr‘”ﬁk*llst = s,a; = a (4) 7 (s) = argmax Q*(s, a) (6)
k=0 acA

k=0
. . - . 0
In most situations it is desired to have knowledge of theaval
of an action in a certain state, we call this the Q-value, wit
Q(s,a) providing the value of taking in s, it is defined as:

Assuming the values of all successor stateare known to D. Q-Learning

the ggent, Eq. (4) can be rewritten as the_reward the agentrhe introduction of Q-learning by Watkins in 1989 [24],
receives plus the discounted value ©f weighted by the o5 signified a great leap forward in the progress of the
probability of ending ins’, after taking action: in s: field of reinforcement learning. It is different from value

Q™ (s,a) = ZT(S%S/)[R(&G) + V()] (5) iteration in the sense that it does not require an a-priori
- model of the environment and can therefore be used for more



applications. Furthermore, Q-learning can be combinetl witA. Belief states
function approximators to solve large dimensional prolslem A pajief stateb, is a probability distribution overs, to

or problems involving continuous state spaces. model the belief of the agent at timeThe set of all possible
After each action taken, the agent evaluates the val.ue Bllief states is referred to as the belief sp&ceThe belief
the action and uses this to update the current Q-value: ¢ ctates at timet is denoted as,(s). Every time the agent
Qst,ar) — Q(se, az) + ad(se, ar) (7) takes an action, its belief state is updated. GiER', a, z),
the probability of observing: in successor state’ after
where o denotes the learning rate, to be decreased as thétion « and the transition probabilityl’(s, a, s’), Bayes’
algorithm progresses, ani{s;,a;) the TD-error, which is theorem can be applied to update the belief of the agent:

computed according to:
bi(s") =n0(s',a,2) ) T(s,a,s)b(s) (10)
0(star) = repr +ymaxQ(se1,a) — Qlse ar) - (8) s;s

It is known that for finite state and action spaces, Q-legrninWheren is a normalizing constant. The belief state effec-

converges to the optimal*(s,a) as long as every state- tively sums up all of the agent’s past actions and obsemstio

action pair is visited infinitely often [25]. and is therefore a Markovian signal and a sufficient statisti
Q-learning needs to visit all state-action pairs repegtem| t0 base its actions on. Since the agent is no longer certain

get reliable estimates for their values. Therefore it rezian  Of its position, the expected reward for a belief state has to

exploration policy. In this paper we use teeftmaxaction ~be weighted by the belief in all individual states:

selection rule [23], also known as Boltzmann exploration. -

Softmax uses eE Gi]bbs or Boltzmann distribution forZngirin R(b,a) = > _b(s)R(s,a) 11)

the probability of an action: €8

The initial value function at = 0 is given by:

eQ(s,0)/7 9
m(s,0) = Z eQ(s:a’)/7 © Vo(b) = maXZb(s)R(s,a) 12)
a’€A ‘ s€S
Wherer denotes the temperature parameter. The value of a belief state under a polieyis computed
Consider again the problem of a robot trying to navigat@ccording to: B
itself from a start to a goal position. In all real world VT(b) = Zb(s)V”(s) (13)
situations, there is noise in its sensor readings as wedl; th s€S

world is partially observable to the agent. On top of thisrhe key observation here is that this knowledge is sufficient
some sensor readings might seem similar, due to a similgy {ransform the POMDP to a continuous state MDP, where
looking environment or due to the distortion caused by thggjief spacel3 represents the state spaSe Because the
noise in its sensors. This phenomenon is knowpaseptual resylting MDP has a continuous state space, the problem
aliasing The uncertainty in observations can be incorporated ;|| very hard to solve optimally. In section IIC we

into the MDP model. The acquired result is called a partiallyii| further elaborate on this concept and show how value

observable Markov decision process, or POMDP. iteration can be applied in POMDPs.
I1l. PARTIALLY OBSERVABLE MARKOV DECISION Numerous algorithms have been developed for solving
PROCESS POMDPs [7], [11], [12], [13], most of these using some

. - form of value iteration. Qmdp is one of these, applying value
A POMDP is a generalization of an MDP and models NOkaration in its most rudimentary form.

only the stochasticity in transitions, but also in obsdors,

rendering the state of the agent partially observable. Ti® Qmdp
POMDP framework consists of the same set of statesS,
actionsa € A, transition functionT'(s,a,s’) and reward
function R(s,a). On top of this a POMDP consists of a
set of observations € Z and an observation function
O(s, a, z), providing the probability of observing in state
s, after executing actiom. Similar to the MDP model all
setsS, A and Z are assumed to be discrete, although work Q(g, a) = Zb(S)QMDP(S, a) (14)
in continuous spaces has been done (e.g., [15]). scs

In an MDP the agent acts according to what seems .
be the best possible action for a given state, but since t%hereQMDP denotes the Q-value of the underlying MDP.

. X : S . -With these values in hand, Eq. (6) can be rewritten to select
agent is no longer certain of its location it has to estimege i . . . .
the action with the highest expected value:

position based on the input it receives and its actions taken
A common approach to do this is by trackingalief state 7(b) = arg max[z b(s)Qupp(s,a)l (15)
[2] “ SES

An easy method for solving model-based POMDPs is to
make use of the Q-values of the underlying MDP, thereby
ignoring the observation model [11]. By treating the belief
space as if it were the state space in an MDP, the value of
taking actiona in belief stateb is given by:



The Qmdp algorithm is easily implementable and can be vewill be added and a new value function, made up of the

fast in a problem with a large number of states. Furthermorsurface of all vectors will be computed. Every stage can be
it has been applied with great success on particular mageen as a backup of the previous value function. At every
navigation tasks [11]. A disadvantage however, is that dpackup stage, the vector parameterizing the surface of the
agent following this policy does not take information gathe value function can be computed according to:

ing actions. For a more exact solution we have to consider the

observation model and adjust the value iteration algorittim

suit POMDPs. A short version of the methods involved will backupih) = ab | =arg max b-a (29)

be provided in the next section. €1

C. Value iteration in POMDPs Where T ( \and = |HV, i H
. . . . erel 1 = (aq,Q2,...,qp an = |, 1.e., the
Value iteration can also be applied to compute SOlunorﬁumber of vectors in the value function [21]. This notation

for POMDPs.-Here, we wil present a brief outline ofwill be useful for understanding the Perseus algorithm.
the methods involved, as an introduction to the Perseus

algorithm. For detailed descriptions we refer to Sondik][20 Value iteration is computationally expensive in POMDPs,
and Puterman [16]. because at each iteration the value of every point in the

Recall from section IlIA, that when acquiring the value€ntire belief space is updated. Recently developed methods
function of a POMDP under a certain policy, the value oknown as point-based algorithms, have started working with
every state needs to be weighted by the agent's belief [gStricting value iteration to a subset of the belief spaie |
the given state. For notational convenience Eq. (13) can b&2], [14], [27]. Perseus is one of such algorithms.
written as a dot product:

V(b)) =b-a" (16)

Wherea™ = {V7(s1),V"(s2),...,V™(sn)}. In section 1IB, D. Perseus

a policy was described as a function specifying which action

to take in a given state. Working towards an optimal policy, perseus is an approximate point-based value iteration
the agent needs to select the best action at every time:steRygorithm for solving POMDPs and was introduced by

V(E) — maxh- o 17) Spaan and Vlassis in 2005 [21], [22]. The algorithm starts
¢ €l by performing a random walk through the environment,
with Iy = {a1,as,...,a;}. The state of the agent is thereby sampling a se® = {b,bs,...,b,,} Of reachable

a continuous function of all individual beliefs in a state Pelief points. These points remain the same throughout the

Assigning the belief of a state to every axis, plotting thé&/gorithm. This holds an advantage over other algorithms

belief state will result in anS| — 1-dimensional hyperspace that work with the complete b_ellef space in the sense that it

(probabilities sum to 1, thus the belief i5| — 1 states only computes values for belief points that can actually be

is sufficient to determine the entire belief state). All beli €ncountered by the agent.

points are contained in a belief simpléx With every region The initial value function is set as a single vector, with all

of the belief space, an optimal action is associated, this édmponents set tqﬁ—7 min, , R(s,a), the minimal cumula-

represented by one of the-vectors. tive reward obtainable in the POMDP, guaranteed to be below
Again, applying the concept of weighting probabilities,V*. Perseus introduces a new backup operatpr; rszus,

we can combine the functions defined so far into a generahd in every backup stage, tries to improve the value of all

formula for an optimal value function: belief points, or at least makes sure that they do not deereas
V() = gng[z R(s,a)b(s) +7 Y V*(b7))]  (18)
€S S Va(b) < Voa1(b),Vb e B (20)

whereb? is given by the belief function, defined in Eq. (10).

For short, we can writeV* = HV*, with H defined as the

Bellman backup operator. It keeps track of the set of non-improved poirts and as
Since for every region of the belief space, there isnan long as B is not empty, samples uniformly at random a

vector optimizing the value, the optimal value functionlwil belief pointb and computesx = backugbd). If the vector

be made out of a finite set of hyperplanes, building up thenproves the value 0¥, it is added to the value function of

surface of the belief simplex. Sondik showed this functiofV,,;, otherwise a copy o¥,, will be inserted. In an ideal

is piecewise, linear and conve?WLC) for finite horizon situation, an increase in value of a belief polne B will

POMDPs and is approximately PWLC for POMDPs with arincrease the value of many other pointsdnGiven the shape

infinite horizon [20]. of the value function, such a method can be very effective
Analogous to value iteration in MDPs, the value functiorin approximating solutions. The backup stage is given in

is updated iteratively. In every iteration a set @fvectors Algorithm 2.



Algorithm 2 The backup stag®,,.; = Hprrseus error. To obtain this target, we can rewrite Eq. (8) and updat

Vi1 — 0 the network of the previously selected action in the follogyi

B~ B way:

repeat . Q(bt, ar) = rs1 + ymax QNN (b, (21)
Sample a belief point b uniformly at random from (bt ar) = 7141 acA (be-1)

and computex = backugb)
if b-a>V,(b) then
adda to V11
else
addo’ = argmax b« to V11

Instead of updating the Q-value as in Eqg. (7), the backpropa-
gation learning algorithm is used to update the weights ®f th
networks with learning rate.. The method discussed so far,
which we call BQNN, has been used in [26] and obtained

) ael, very good results for some small model-based POMDPSs. In
end if the following section we will show that this method can be
BI = {Vb®€ B Vi1 (b) < Vi(b)} enhanced by using region-based belief vectors.

until B =

A. RENQ: Region Enhanced Neural Q-learning

This stage is performed iteratively, until some stopping
criterion is met. This could be, analogous to regular value The RENQ algorithm enhances the belief vector by adding
iteration, terminating the algorithm as soon as the maximuiie average beliefs that the agent is in a particular regfon o
difference between two backup stagesxyec(Vy41(b) — the state space. This information is easily obtainable and
V,.(b)), drops below a threshold. its use can be very profitable. By using this kind of state

The POMDP algorithms discussed so far, all make us@bstraction, RENQ can be seen as a new hierarchical RL
of value iteration. We will now discuss some previous worlkalgorithm.
on Q-learning in combination with reinforcement learning Basically, RENQ is inspired by a technique for extracting
and neural networks, followed by the introduction of a newWnformation from images in object recognition, known as
approach, combining several of these techniques. a spatial pyramid[9], [1]. In this method, the image is

divided into regions and spatial features, e.g., a histogeae
IV. RENQ FOR SOLVING MODEL-BASED POMDPs computed for all regions. This approach is known to improve

As described in section IIE, the Q-learning algorithmrecognition performance greatly. RENQ uses this method in a
updates each state-action pair after executing an actiafvel way and applies the spatial pyramids to the state space
However, because the belief space is used as a state sgaceotfithe POMDP. The approach works with several levels. At
number of possible states encountered is infinite. Thezgforeach level, the state space is divided ikteegions of equal
to work with a lookup table for each belief state-actiorsize. At level 1 the used region is equal to the original state
pair becomes impossible and there is need for a functigpace, where each state is a singleton region, thus 1.
approximator, which generalizes between these pairs amdlis is equal to the BQNN method used in [26]. Level 2
associated Q-values. Neural Networks (NN) provide suclecomposesS into 2 x 2 quadrants, making = 4. Level 3
a method and are known to be a powerful formalism igubsequently subdivideS in 3 x 3 regions withk = 9, level
function approximation, gaining success in a wide variety in 4 x 4, etc.
of applications [4], [10], [18], [26], [17]. For everyk, ¢; C S the average belief valugis computed:

To use neural nets to predict Q-values, there are two
possible approaches. Either one network is used, yith
output units, or a single net is assigned to everg A, as
used by Lin [10]. The advantage of the latter approach is
that, when trying to obtain the Q-value of a given action . 2. L .
one can easi);y %ddress the res(sonsible netV\?ork. Also thT:?e enhanced belief vef:tbf is the combination of all belief
will reduce the untraining of weights, caused by changes i?}EEtSB’€ for every levelk:
the state space. A possible disadvantage of this method is : .
that it requires more weights and might therefore sometimes by, = Ux=1 By (23)
require more training data. -

To eacha € A, we assign an NNQYY . The belief state Subsequentlyb} is fed as an input-vector to the networks
at timet, by, is fed to the networks as a&|-dimensional and Q-values are estimated. The computation of this addi-
input vector and a single output unit is used to predict théional information might seem redundant, but as we will
Q-value of an action in the given belief state. The numbeghow, this can actually be very effective.
of hidden units is left as a parameter. Example. Consider a 4x 4 grid maze, withS| = 12. The

As opposed to normal neural network training, the netgrid can be divided into 4 square regions of 2 (level 2).
works in this case do not learn from correct examples, bior each region we will compute the average belief according
from approximations. So as a target, the Q-value at the neixt Eq. (22). A depiction of the general idea is provided by
time step was fed to the network and used to compute tlégure 1.

b(sk) = ﬁ > b(s) (22)

SESK



C available on Spaan’s website is used and the algorithm is
run on Matlab 2009b for Linux. The RENQ and Qmdp
algorithms use self written C++ implementations.

e |
)
e |

A=)

_ A. Small Maze

The maze is depicted in Figure 2, with G as the goal
position. The starting state can be any other unoccupié¢gl. sta
The entire maze is surrounded by a 1 block wall. For all
algorithms, the discount factor is set4o= 0.7.

G

fann V|
)
e |

A=)

Fig. 1. Level 2 spatial pyramid applied to the belief state 6f@QMDP

The belief function represents a belief of the agent, being
in a certain state. The knowledge we add will also provide
the agent with an estimate of its approximate position. If
the goal of the agent is to get to a goal state somewhere in
the upper right corner of the state space and the agent has
a fair degree of faith its position is somewhere within the
boundaries of the lower left corner, it is very likely it will
steer itself either north or east. _ N _

In this example, the state space was divided into 4 regiorf(?rngihem‘;Issm;gmzzﬁ;eemd;?tes the goal position. Note thatid/eot
For larger problems, one might consider breaking up the
problem into more and/or larger sections, i.e., higherlgve
and add the average belief of these regions to the inputRENQ. A simulation lasts for 100,000 learning steps.
vectors of the networks as well. This is left as a parametdRuring an experiment, we perform 50 simulations. A run
Naturally, variations on this scheme can be developed, fig finished if the goal is hit or if the agent performed
instance for problems that are not captured in a square std800 actions during the run. The learning rateof the
space POMDP, the dimensions of the spatial pyramid can lbeural network is set to 0.015. The neural network used 20
modified to suit the particular problem. sigmoidal hidden units for each separate action network. We

In the following section we will provide details about theused Boltzmann exploration with = 1. We also used the
benchmark problems used to test the algorithms, the optingdme parameters to test the performance of BONN and Q-
parameter settings found and show the results comparing tliearning with neural networks on an MDP.

RENQ algorithm to BQNN, Qmdp, and Perseus. Perseus Following Spaan, we ran Perseus 10 times, each
with a different random seed. For the small maze, we
sampled a setB| = 200 belief points. With every simulation

To test the algorithms, we use 3 square maze navigatitime algorithm perform 1000 episodes, starting from random
tasks of 44, 10x10 and 222, with |S| = 12, |S| = 73  positions. We let the algorithm run for 120 seconds, which
and |S| = 344, respectively. Every maze has one statiproved to be enough for convergence. The average of the
goal position and every other unoccupied state can be thatal 10.000 trajectories is computed along with the steshda
initial state. The objective of the agent is to reach the goaleviation.
position as soon as possible and with every action the agentQmdp. We ran the algorithm 100 times, in each simulation
can only reach adjacent states. In every maze, we use tl#ing the agent start at each different starting locatitime
set of actions:. A = {go left, go up, go right, go down average of all thg12)(100) = 1200 different episodes is
with a 20% chance that the selected action is changed byomputed, along with a success percentage, indicating how
a random action fromA. In every of the 4 directions the often the goal was found in an episode. As a stopping
agent can either observe a wall or an empty field, makingriterion for the value iteration part we uge= 1E-6.
the cardinality of| 2| = 2* = 16. We added10% noise We also tested regular value iteration on an MDP. Here
to the observation in each separate direction, meaning thastead of using observations of the maze which creates the
an observation is correct with probability9* = 66%. The need for belief vectors, the single current state of the tigen
agent receives a reward o0 for reaching the goal position fully observed and given to the agent. Of course solving this
and is penalized by-0.1 for every other action. In all mazes MDP is much easier, and we mainly did these experiments to
the only opportunity for the agent to get a reward is byompare value iteration for MDP (an optimal method), with
reaching the goal state. We therefore chose to measure Qdearning and neural networks to solve the MDP, to see how
number of steps to the goal position, since this does natuch worse neural network solutions are compared to the
depend on the size of the rewards. optimal solutions. The results are shown in Table |. Forealu

We run the algorithms on an Intel Dual Core 2.33GHziteration on the MDP (VI MDP) we did not compute standard
with 3.4 GB RAM. For Perseus, the Matlab implementatioreviations, since it always computes the same policies.

V. EXPERIMENTS



TABLE | TABLE I

RESULTS ON THE SMALL MAZE. RESULTS ON THE10x 10 MAZE.
Method Final steps| Nr. Times Goal hit| % Success Method Final steps| Nr. Times Goal hit] % Success
VI MDP 3.86 100 VI MDP 11.3 100
RL+NN MDP 3.85+ 0.04 25375+ 533 100 RL+NN MDP 11.9+ 0.3 14165+ 436 100
BONN 4.37+ 0.09 22156+ 967 100 BONN 152+ 04 10971+ 208 100
RENQ LEVEL 2 || 4.37+ 0.08 22172+ 1001 100 RENQ LEVEL 2 || 15.1+ 0.3 11526+ 195 100
RENQ LEVEL 3 || 4.36+ 0.06 22307+ 796 100 RENQ LEVEL 3 || 15.2+ 0.3 11608+ 200 100
Qmdp 4.38+ 0.68 100 RENQ LEVEL 4 || 15.2+ 0.3 11606+ 179 100
Perseus 4.79+ 0.03 100 Qmdp 147+ 0.6 100
Perseus 15.7+ 0.1 100

Discussion.As can be seen in Table I, RENQ significantly Discussion.As can be seen in Table II, Qmdp performs

outperforms Perseus at all levels, but performs the same a3 b : . g

est for this maze, while RENQ significantly outperforms
Q_mdp. Furt.hermore, RENQ at Lev_eI 3 (.)ut.performs BQ'\NDerseus at all levels. RENQ at higher levels learns much
W|thouF region (_anhe}nced bghefs, since it finds the goal t’Z‘gi‘%ster than BQNN with only the state-based belief vector
most times during its learning process. Note that althou Ince they hit the goal significantly more often. We can also

all RENQ systems receive the same number of total Steps,, . ‘so1ving this MDP with Value Iteration (VI MDP)

some methods may learn faster and hence hit the goal more . .
. : . inds a solution of 11.3 steps on average, whereas usin
often. We can also see that solving this MDP with Valu P 9 g

: . . -learning and a neural network as function approximator
Iteration (VI MDP) finds a solution of 3.86 steps on averaggQ g PP

. . . (RL+NN MDP) comes very close to this optimum.
whereas using Q-learning and a neural network as func'ucg'n ) y P
roximator (RL+NN MDP) learns th m imal policy,
approximator ( ) learns the same optimal po cyC. Large Maze

For the large maze shown in Figure 4, we use a discount
B. Middle-sized Maze factor v = 0.99.

We use the 1010 maze shown in Figure 3. For all
algorithms, we set the discount factor4o= 0.95.

Fig. 3. The Middle-sized maze. G denotes the goal position. Fig. 4. The Large maze. G denotes the goal position.

RENQ. A simulation lasts 2,000,000 steps. The learning

RENQ. A simulation lasts for 200,000 steps. The learningate  of the neural network is set to 0.01. The neural
ratea of the neural network is again set to 0.015. The neurgetwork used 60 sigmoid hidden units for each separate
network used 60 sigmoidal hidden units for each separaigtion network. We used Boltzmann exploration with=
action network. We used Boltzmann exploration witls 1. 1

Perseus Again we ran the algorithm 10 times, each with Perseus Continuing in the same fashion, we ran the
a different random seed and let the agent perform 10Qflgorithm 10 times, each with a different random seed. We
trajectories, each starting from a different random stgrti sampled B| = 10000 belief points and let the algorithm run
location. We sampleg¢l3| = 1000 and let the value iteration for 2 hours. The average number of steps of 5 simulations
stage run for 600 seconds. The average number of steps f®icomputed along with a standard deviation.
the 10000 trajectories is computed along with a standard Qmdp. Again we use 100 simulations, in each simulation
deviation. we let the algorithm start from all thes| different goal posi-

Qmdp. We use 100 simulations, in each simulation contions. The average number of steps of all t08|S| = 34400
sists of|S| episodes and the average of all t®|S| = 7300  episodes is computed, along with a success percentage. The
trajectories is computed. The results are shown in Table lkkesults are shown in Table lIl.



TABLE Il

RESULTS ON THE22x 22 MAZE. [2]

3

Method Final steps| Nr. Times Goal hit| % Success H
VI MDP 214 100
RL+NN MDP 23.7+ 2.4 51372+ 5413 100

BONN 397.8+ 1438 27290+ 7502 97 [5]
RENQ LEVEL 2 339+ 05 37639+ 1363 100
RENQ LEVEL 3 33.6+ 0.5 38418+ 1338 100

RENQ LEVEL 4 338+ 04 38098+ 1641 100 [6]
Qmdp 356+ 1.0 99.3
Perseus 34.7+ 0.3 100

] L.P. Kaelbling, M.L. Littman, and A.W. Moore.

Discussion.As can be seen in Table Ill, RENQ signifi-
cantly outperforms Qmdp and Perseus at levels 2, 3, and 4.
BQNN fails to learn a good policy in 2 of the 50 simulations.
RENQ at Levels 3 and 4 performs the best of all POMDP
methods. We can also see that solving this MDP with Valud®]
Iteration (VI MDP) finds a solution of 21.4 steps on average,
whereas using Q-learning and a neural network as functigro)
approximator (RL+NN MDP) again comes close to this
optimum. Note that for this largest problem, Qmdp may;
be a too simple algorithm and is outperformed by Perseus
and RENQ. We did some preliminary experiments with even
larger problems and noted that the difference between REI\@]
and Qmdp becomes even larger.

VI. CONCLUSION [13]

The partially observable Markov decision process
(POMDP) framework provides a model for decision makil4]
ing under uncertainty, caused by for instance, noise in a
robot’s actuators and sensor readings. In this paper we hagys
presented RENQ, a novel approach combining techniques
from machine vision with Q-learning and neural networks, .
to approximate an optimal solution for POMDPs. We have
shown that RENQ outperforms Qmdp, a simple POMDP
algorithm, and Perseus, a state-of-the-art algorithm wthe
maze problems become larger.

A problem that we kept as future work is to automatically
create the optimal spatial layouts. We found that adding lay
ers with more states never reduces performance for pgrtialts]
observable maze navigation problems. We also found that
adding more hidden neurons usually improves performam[:]e
a bit, although this is at the cost of more computational timeg2o]
The system is also fairly robust to the learning rate, and
we hardly experimented with it. The benchmark problemgll
all consist of maze navigation tasks, where state tramsitio
are only defined for adjacent states. It would be interestirig?]
to see how RENQ can be used for problems where this
is not the case. Ultimately, the goal is to work toward$23]
a method providing effective learning behavior in a real
world situation. We also want to study different hierarethic [24]
approaches to improve RENQ's learning speed in futumes)

work.
[26]
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